Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Orv Hetil ; 163(52): 2062-2066, 2022 Dec 25.
Article in Hungarian | MEDLINE | ID: covidwho-2309139

ABSTRACT

INTRODUCTION: In our study, we aimed to investigate whether the COVID-19 infection itself or the vaccination against it affect the differentiation of T cells in the thymus, and whether the reduction in T cell counts observed in the blood of COVID-19-infected individuals is also observed at the tissue level in the thymus. METHOD: Data from a total of 55 thymectomy patients were processed to create three groups: 1) the pre-COVID-19 (PC) group included 22 patients, 12 women and 10 men, who underwent thymectomy between 2008 and 2013; 2) in the no-COVID-19 (NC) group (patients without verified infection or vaccination), 20 patients, 11 women and 9 men, underwent thymectomy in 2020-2021; 3) the vaccinated or infected COVID-19 (VIC) group included 13 patients, 4 women and 9 men, who underwent thymectomy also in 2020-2021. The pathological samples were immunohistochemically tested for CD4, CD8, CD25 and FOXP3 to verify the helper, cytotoxic and regulatory T cells. RESULTS: The VIC group had significantly lower values for CD4, compared to the PC and NC groups. The FOXP3 value was significantly lower in the VIC and NC groups compared to the PC group. No significant differences were found for CD8 and CD25 between the groups studied. DISCUSSION: The COVID-19 infection or vaccination affects the T cell composition of the thymus. Decreased expression of CD4 has been demonstrated in the VIC group, which confirms a decrease in the T cell counts that also occurs in the thymus. The low FOXP3 levels observed in the NC group during the COVID-19 era, compared to the PC group, may be indicative of a high rate of asymptomatic coronavirus infections and a worsening of immunetolerance. CONCLUSION: First in the world, we have verified that the helper T cell composition of the thymus in COVID-19 infection era is reduced, and in the asymptomatic patients the immune function is decreased as well. Orv Hetil. 2022; 163(52): 2062-2066.


Subject(s)
COVID-19 , Pandemics , T-Lymphocytes , Thymus Gland , Female , Humans , Male , COVID-19/immunology , COVID-19/prevention & control , Forkhead Transcription Factors/metabolism , Thymus Gland/immunology , Lymphocyte Count , T-Lymphocytes/immunology , Vaccination
4.
Annu Rev Biomed Eng ; 23: 461-491, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1191179

ABSTRACT

Modeling immunity in vitro has the potential to be a powerful tool for investigating fundamental biological questions, informing therapeutics and vaccines, and providing new insight into disease progression. There are two major elements to immunity that are necessary to model: primary immune tissues and peripheral tissues with immune components. Here, we systematically review progress made along three strategies to modeling immunity: ex vivo cultures, which preserve native tissue structure; microfluidic devices, which constitute a versatile approach to providing physiologically relevant fluid flow and environmental control; and engineered tissues, which provide precise control of the 3D microenvironment and biophysical cues. While many models focus on disease modeling, more primary immune tissue models are necessary to advance the field. Moving forward, we anticipate that the expansion of patient-specific models may inform why immunity varies from patient to patient and allow for the rapid comprehension and treatment of emerging diseases, such as coronavirus disease 2019.


Subject(s)
COVID-19/immunology , Tissue Engineering/methods , Adaptive Immunity , Animals , Biophysics , Humans , Immune System , Immunity, Innate , In Vitro Techniques , Lab-On-A-Chip Devices , Lymphocytes/immunology , Macrophages/immunology , Mice , Microfluidics , SARS-CoV-2 , Thymus Gland/immunology , Tissue Array Analysis
5.
Cells ; 10(3)2021 03 12.
Article in English | MEDLINE | ID: covidwho-1167427

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the global pandemic of coronavirus disease 2019 (COVID-19) and particularly exhibits severe symptoms and mortality in elderly individuals. Mounting evidence shows that the characteristics of the age-related clinical severity of COVID-19 are attributed to insufficient antiviral immune function and excessive self-damaging immune reaction, involving T cell immunity and associated with pre-existing basal inflammation in the elderly. Age-related changes to T cell immunosenescence is characterized by not only restricted T cell receptor (TCR) repertoire diversity, accumulation of exhausted and/or senescent memory T cells, but also by increased self-reactive T cell- and innate immune cell-induced chronic inflammation, and accumulated and functionally enhanced polyclonal regulatory T (Treg) cells. Many of these changes can be traced back to age-related thymic involution/degeneration. How these changes contribute to differences in COVID-19 disease severity between young and aged patients is an urgent area of investigation. Therefore, we attempt to connect various clues in this field by reviewing and discussing recent research on the role of the thymus and T cells in COVID-19 immunity during aging (a synergistic effect of diminished responses to pathogens and enhanced responses to self) impacting age-related clinical severity of COVID-19. We also address potential combinational strategies to rejuvenate multiple aging-impacted immune system checkpoints by revival of aged thymic function, boosting peripheral T cell responses, and alleviating chronic, basal inflammation to improve the efficiency of anti-SARS-CoV-2 immunity and vaccination in the elderly.


Subject(s)
COVID-19/immunology , Cellular Senescence/immunology , T-Lymphocytes/immunology , Thymus Gland/immunology , Aged , Aged, 80 and over , Aging/immunology , Aging/pathology , Autoimmunity , COVID-19/physiopathology , Humans , Inflammation/immunology , Inflammation/pathology , SARS-CoV-2/immunology , Thymus Gland/drug effects , Thymus Gland/physiopathology , Thymus Gland/virology , COVID-19 Drug Treatment
7.
Hum Vaccin Immunother ; 17(3): 638-643, 2021 03 04.
Article in English | MEDLINE | ID: covidwho-872898

ABSTRACT

The thymus is a largely neglected organ but plays a significant role in the regulation of adaptive immune responses. The effect of aging on the thymus and immune senescence is well established, and the resulting inflammaging is found to be implicated in the development of many chronic diseases including atherosclerosis, hypertension and type 2 diabetes. Both aging and diseases of inflammaging are associated with severe COVID-19 disease, and a dysfunctional thymus may be a predisposing factor. In addition, insults on the thymus during childhood may lead to abnormal thymic function and may explain severe COVID-19 disease among younger individuals; therefore, measurement of thymic function may assist COVID-19 care. Those with poor thymic function may be treated prophylactically with convalescent serum or recombinant antibodies, and they may respond better to high-dose or adjuvanted COVID-19 vaccines. Treatments inducing thymic regeneration may improve patients' overall health and may be incorporated in COVID-19 management.


Subject(s)
Antibodies/therapeutic use , COVID-19 Drug Treatment , COVID-19/immunology , Thymus Gland/immunology , Animals , COVID-19/virology , COVID-19 Vaccines/immunology , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/virology , Severity of Illness Index , Thymus Gland/virology
8.
Eur J Pediatr ; 180(3): 983-986, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-848315

ABSTRACT

A new type of coronavirus named as SARS-CoV-2 pandemic has begun to threaten human health. As with other types of coronaviruses, SARS-CoV-2 affects children less frequently, and it has been observed that the disease is mild. In the pathogenesis of a standard viral infection, the pathogen's contact with the mucosa is initially followed by an innate immunity response. T cells are the primary decisive element in adaptive immunity capability. For this reason, the adaptive immune response mediated by the thymus is a process that regulates the immune response responsible for preventing invasive damage from a virus. Regulatory T cells (T-reg) are active during the early periods of life and have precise roles in immunomodulation. The thymus is highly active in the intrauterine and neonatal period; it begins to shrink after birth and continues its activity until adolescence. The loss of T-reg function by age results in difficulty with the control of the immune response, increased inflammation as shown in coronavirus disease (COVID-19) as an inflammatory storm. Also, the thymus is typically able to replace the T cells destroyed by apoptosis caused by the virus. Thymus and T cells are the key factors of pathogenesis of SARS-CoV-2 in children.Conclusion: We speculated that thymus activity and T lymphocyte function in children protect them against the virus effects. Stimulating and preventing the inhibition of the thymus can be possible treatment components against COVID-19. What is Known: • The SARS-CoV-2 infection does not often progress with an invasive clinic in children. • Thymus activity and T lymphocyte functions are highly active in children. What is New: • Effective thymus activity and T lymphocyte function in children protect them against the invasive SARS-CoV-2 infection. • Stimulating and preventing the inhibition of the thymus can be possible treatment components against COVID-19.


Subject(s)
Adaptive Immunity , COVID-19/immunology , T-Lymphocytes/immunology , Thymus Gland/immunology , COVID-19/diagnosis , Child , Humans , Severity of Illness Index
9.
Can J Microbiol ; 67(1): 23-28, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-637554

ABSTRACT

Understanding the pathogenesis of certain viral agents is essential for developing new treatments and obtaining a clinical cure. With the onset of the new coronavirus (SARS-CoV-2) pandemic in the beginning of 2020, a rush to conduct studies and develop drugs has led to the publication of articles that seek to address knowledge gaps and contribute to the global scientific research community. There are still no reports on the infectivity or repercussions of SARS-CoV-2 infection on the central lymphoid organ, the thymus, nor on thymocytes or thymic epithelial cells. In this brief review, we present a hypothesis about lymphopenia observed in SARS patients and the probable pathological changes that the thymus may undergo due to this new virus.


Subject(s)
COVID-19/complications , COVID-19/immunology , Lymphopenia/complications , Thymus Gland/virology , Animals , Humans , Lymphopenia/immunology , Lymphopenia/virology , Mice , Models, Immunological , Pandemics , Thymus Gland/immunology
SELECTION OF CITATIONS
SEARCH DETAIL